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概要
カスプ辺は波面に現れる安定特異点の一つである．このカスプ辺を含む特異点のクラスとして

m-type edge が Martins et al. [5] により導入された．本研究では，与えられた実解析的かつ
ジェネリックな m-type edge に対し，特異曲線の像と第一基本形式を共有する m-type edge の
右同値類と合同類の個数の分類を行った．
m が偶数の場合には Honda et al. [3, 4] の一般化カスプ辺に対する結果の一般化が得られ，

m が奇数の場合には一般化カスプ辺には無かった結果が得られた．具体的に，一般化カスプ辺の
場合では現れなかった第一基本形式の対称性 (non-effective symmetry) が分類において重要な
役割を果たすことが確認された．

1 導入
与えられた実解析的なリーマン計量を第一基本形式としてもつ正則曲面は非可算個存在する．一

方，同様の問題をカスプ辺をもつ曲面に対して考えると，特異点集合の像として定まる正則曲線が，
新たなデータとして自然に現れる．Honda et al. [3]は，実解析的かつジェネリックな場合に，与え
られた特異点をもつリーマン計量（Kossowski 計量と呼ばれる）を第一基本形式にもち，与えられた
空間内の正則曲線を特異点集合にもつカスプ辺が，ちょうど 4 つ存在することを示した．さらに，そ
れら 4 つのカスプ辺の像が 2 つになることと，Kossowski 計量が対称性をもつことが同値であるこ
と，また 4 つのカスプ辺の合同類の個数と，計量および空間曲線の対称性との関係を明らかにした．
[3] で導入された一般化カスプ辺に対しても同様の結果が [4, Theorem 5.7] によって示されている．
近年，一般化カスプ辺を含む特異点として，m-type edge が Martins et al. [5] により導入され

た．m-type edge は一般化カスプ辺や (3,4)-カスプ辺などを含むことから，非常に広いクラスと見な
せる．mが偶数の場合には一般化カスプ辺と類似の現象が確認される一方で，mが奇数の場合には
一般化カスプ辺とは異なる現象が起こることが指摘されている．
以上を踏まえて，カスプ辺や一般化カスプ辺の場合と同様に m-type edge を持つ曲面に対して次

の問題を考える．

問題. 与えられた実解析的かつジェネリックな m-type edge に対して，同じ特異曲線の像と第一基
本形式を持つ m-type edge の個数の分類はどのようになるか？
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2 定義
Σを 2次元多様体とする．初めに，写像芽に関する同値関係を定義する．

定義 1. 2つの C∞ 級写像芽 f : (Σ, p) → (R3, f(p))と f̄ : (Σ̄, p̄) → (R3, f̄(p̄))を考える．

(1) f と f̄ が右同値であるとは，R2 の原点近傍で定義された微分同相写像 φ : (Σ, p) → (Σ̄, p̄) が
存在して，f̄ = f ◦ φを満たすことをいう．

(2) f と f̄ が右左同値 (A-同値) であるとは，2 つの微分同相写像芽 φ : (Σ, p) → (Σ̄, p̄) と
Φ : (R3, f(p)) → (R3, f̄(p̄))が存在して，f̄ = Φ ◦ f ◦ φ−1 が成り立つときをいう．

(3) f と f̄ が合同であるとは，ある 3次直交群 T ∈ O(3) が存在して，Tf と f̄ が右同値である
ときをいう．

2.1 特異点とフロンタル
f : Σ → R3 を写像としたとき，p ∈ Σ が f の特異点であるとは，f が p ではめ込みでないときを
いう．このような特異点をもつ曲面のクラスとして，曲面上の任意の点で単位法ベクトル場がとれる
ようなフロンタルと呼ばれるクラスがある．まず，1章 (導入)で登場した“フロンタルがジェネリッ
クであること”の定義を述べる．
定義 2. フロンタル f : Σ → R3 に対して，S(f)で f の特異点集合を表し，S(f)が正則曲線である
ことを仮定する．さらに，S(f)上の点 pは階数 1の特異点であると仮定する．このとき，

(1) S(f)を特異曲線という．
(2) 特異曲線の接ベクトルを特異ベクトル，特異ベクトルの定める 1次元ベクトル空間を特異方向
という．

(3) さらに，df(v) = 0を満たす零でない接ベクトル v ∈ TpΣを退化ベクトル，退化ベクトルの
定める方向を退化方向という．

定義 3. 特異点 p ∈ S(f)が第一種特異点であるとは，pにおいて特異方向と退化方向が異なるとき，
つまり退化方向 〈ηp〉R = ker(dfp)が特異方向 TpS(f)と異なるときをいう．
定義 4. f : Σ → R3 をフロンタル，ν を f の単位法ベクトル場，p ∈ Σを第一種特異点とする．さ
らに，γ(t)を γ(0) = pとなる特異曲線，γ̂ := f ◦ γ, ν̂ := ν ◦ γ とする．フロンタル f がジェネリッ
クであるとは，f の極限法曲率 κν(t) := 〈γ̂′′(t), ν̂(t)〉/〈γ̂′(t), γ̂′(t)〉 が特異点集合上で零でないとき
をいう．
さらにフロンタルの一種として，波面 (フロント)と呼ばれるクラスが存在する．この波面に頻繁
に現れる特異点として，カスプ辺とツバメの尾が存在する．本稿では特にカスプ辺に注目し，より一
般化したクラスである m-type edge を基にして議論を行う．



2.2 m-type edge の導入
定義 5. mを正の整数とする．このとき，C∞ 級写像 f : Σ → R3 が p ∈ Σで m-type edgeであ
るとは，写像芽 f : (Σ, p) → (R3, f(p))が原点での写像芽

R2 3 (u, v) 7→ (u, vm, vm+1α(u, v)) ∈ R3

と右左同値となるような C∞ 級関数 α(u, v)が存在するときをいう．
m-type edgeの定義に現れるmおよび α(u, v)について，

• m = 2および α(u, v) = 1としたものは，カスプ辺とよばれる (図 1)．
• m = 2および α(u, v) = uk+1 ± v2 としたものは，S±

k 特異点とよばれる (図 1)．
• m = 2としたものは一般化カスプ辺 (generalized cuspidal edge)とよばれる [3]．
• m = 3および α(u, v) = 1としたものは，(3, 4)-カスプ辺とよばれる (図 2)．
• m = 3および α(u, v) = v としたものは，(3, 5)-カスプ辺とよばれる (図 2)．

特に (3, 4)-カスプ辺は楕円面の平行曲面で最初に現れる特異点であり (図 3)，自然に表れる特異点で
あることから重要な研究対象である．

図 1 m-type edge の例
(左：標準的なカスプ辺, 中央：標準的なカスプ状 S+

1 特異点, 右：標準的なカスプ状 S−
1 特

異点)

図 2 m-type edge の例
(左：標準的な (3, 4)-カスプ辺, 右：標準的な (3, 5)-カスプ辺)



図 3 楕円の平行曲面で表れる (3, 4)-カスプ辺

与えられた m-type edge に対して，同じ特異曲線の像と第一基本形式をもつ m-type edge が存
在するための十分条件を満たす集合を定義する．c(u) を閉区間 J := [−l, l] (l > 0) 上で定義され
た，弧長パラメータ表示された R3 の正則曲線として，J 上では κ > 0とする．U を R2 における
J × {0}の近傍とし，f : U → R3 を J × {0} でジェネリック (定義 4)な m-type edge のみをもつ
実解析的な写像で

f(u, 0) = c(u) (u ∈ J)

であるものとする．また，c(u) の像を C := c(J)と表し，maxu∈J |κs(u)| < minu∈J κ(u)をみたす
f の集合を admissibleといい，

Gω
m,∗∗(R

2
J ,R

3, C)

で表す．
定義 6. f ∈ Gω

m,∗∗(R
2
J ,R

3, C)を m-type edge として，f̌ , f∗, f̌∗ はいずれも f と同じ特異曲線の
像と第一基本形式を持つとする．

(1) f̌ が f の等長双対とは，f̌ と f は特異曲線をたどる向きが同じ (つまり，f̌ と f は C に同じ
向きを定める)で， 極限法曲率の符号が逆であるときをいう.

(2) f∗ が f の逆であるとは， f∗ と f は特異曲線をたどる向きが逆 (つまり，f∗ と f は C に逆の
向きを定める)で，極限法曲率の符号が同じであるときをいう.

(3) f̌∗ が f の逆双対であるとは，f̌∗ と f は特異曲線をたどる向きと極限法曲率の符号がともに逆
である．

注意 7. admissible の定義より，任意の admissible な写像 f はジェネリックである．
注意 8. 与えられた admissibleなカスプ辺 f に対して f̌ , f∗, f̌∗ が実際に存在し，しかもこの 4つ以
外には現れないことは [3]で示されている．f が m-type edge の場合についても同様に存在と一意
性が [1]で示されている．

2.3 第一基本形式と特異曲線の像に対する symmetry

まず，第一基本形式に対して symmetry と呼ばれる対称性を導入する．以降，f の第一基本形式
を ds2f とする．
定義 9. φを微分同相写像とする．φ∗ds2f = ds2f が成り立ち，かつ φ が恒等写像ではないとき，φ を
ds2f の symmetry という．さらに，



(1) φ が effective symmetry とは，symmetry φ が f の特異曲線の向きを反転させるときを
いう．

(2) φ が non-effective symmetry とは，symmetry φ が f の特異曲線の向きを保つときを
いう．

第一基本形式 ds2f と同様に，特異曲線の像 C に関する対称性を定義する．
定義 10. c(u) を閉区間 J 上で定義された，弧長パラメータ表示された R3 の埋め込まれた正則曲線
として，J 上では κ > 0 とする．さらに，c(u) の像を C := c(J) とおき，C は原点を通るとする．

(1) T ∈ O(3) が C の symmetry であるとは，T (C) = C かつ T は単位行列ではないときを
いう．

(2) symmetry T が C-orientation-preserving であるとは，任意の u ∈ J に対して Tc(u) =

c(u)であるときをいう．
(3) symmetry T が C-orientation-reversing であるとは，任意の u ∈ J に対して Tc(u) =

c(−u)であるときをいう．

さらに， detT = 1 (resp.− 1) のとき，T が正 (resp.負)であるという．

3 主結果
3.1 m-type edge の右同値類の個数
2.2節の f, f̌ , f∗, f̌∗ および 2.3節で述べた ds2f の symmetry を用いて次の右同値類に関する主定
理が得られた．

定理A. f ∈ Gω
m,∗∗(R

2
J ,R

3, C)を m-type edge として，nf を f, f̌ , f∗, f̌∗ の右同値類の数 (つまり，
像の数)とする．このとき，次が成り立つ．

(1) m が偶数の場合
(a) nf = 2, 4 である．
(b) nf = 4 であることと，ds2f が effective symmetry を持たないことは同値である．

(2) m が奇数の場合
(a) nf = 1, 2, 4 である．
(b) nf = 4 であることと，ds2f が symmetry を持たないことは同値である．
(c) nf = 1 であることと，ds2f が effective symmetry と non-effective symmetry の両方を
持つことは同値である．

定理 Aは与えられた特異曲線の像と第一基本形式に対して，同じデータをもつ m-type edge が右
同値の意味で何通り現れるかを，ds2f の symmetry の有無だけで記述できることを意味する．

注意 11. 定理 Aは m = 2 (つまり一般化カスプ辺)の場合，[3, Theorem III], [4, Theorem 5.7] で
示されており，定理 Aはこれらの一般化である．主張は次のとおりである．



f ∈ Gω
2,∗∗(R

2
J ,R

3, C)に対して，nf を f, f̌ , f∗, f̌∗ の右同値類の数とする．このとき，次が成り立つ．
(a) nf = 2, 4 である．
(b) nf = 4 であることと，ds2f が effective symmetry を持たないことは同値である．

3.2 m-type edge の合同類の個数
さらに 2.3節で述べた特異曲線の像の symmetry を用いて次の合同類に関する主定理が得られた．

定理 B. f ∈ Gω
m,∗∗(R

2
J ,R

3, C) を m-type edge として，Nf を f, f̌ , f∗, f̌∗ の合同類の数と定義す
る．このとき，Nf 6= 3 を満たす．さらに，mの偶奇に応じて次が成り立つ．

(1) mが偶数の場合
(I) Nf = 4 であることと，C は symmetry をもたず, かつ ds2f は effective symmetry をも
たないことは同値である．

(II) Nf = 1 であることと，次のいずれかが成り立つことは同値である．
(a1) C が平面曲線かつ C-orientation-reversing symmetry をもつ．
(a2) C が平面曲線かつ ds2f が effective symmetry をもつ．
(b) C が正の C-orientation-reversing symmetry をもち, かつ ds2f が effective symme-

try をもつ．
(2) mが奇数の場合

(I) Nf = 4 であることと，ds2f と C はいずれも symmetry を持たないことは同値である．
(II) Nf = 1 であることと，次のいずれかが成り立つことは同値である．

(a1) C は平面曲線かつ C に C-orientation-reversing symmetry が存在する．
(a2) C は平面曲線かつ ds2f に effective symmetry が存在する．
(b1) ds2f に non-effective symmetry が存在して, かつ C に C-orientation-reversing

symmetry が存在する．
(b2) ds2f に non-effective symmetry と effective symmetry が存在する．
(c) C に正の C-orientation-reversing symmetry が存在して, かつ ds2f にヤコビアンが
負の effective symmetry が存在する．

(d) C に負の C-orientation-reversing symmetry が存在して, かつ ds2f にヤコビアンが
正の effective symmetry が存在する．

定理 Aが定義域のパラメータ変換による同一視 (右同値)に関する分類であるのに対し，定理 Bは
値域の回転と平行移動による同一視 (合同)に関する分類を与える．そして，その合同類の個数を第
一基本形式 ds2f と特異曲線の像 C の symmetry から決定する定理である．

注意 12. 定理 Bは m = 2 の場合，[3, Theorem IV], [4, Theorem 5.7] で示されており，定理 Bは
これらの一般化である．主張は次のとおりである．
f ∈ Gω

2,∗∗(R
2
J ,R

3, C)に対して，Nf を f, f̌ , f∗, f̌∗ の合同類の数と定義する．このとき Nf 6= 3 で
あり，さらに次を満たす．



(I) Nf = 4 であることと，C は symmetry をもたず, かつ ds2f は effective symmetry をもたな
いことは同値である．

(II) Nf = 1 であることと，次のいずれかが成り立つことは同値である．
(a1) C が平面曲線かつ C-orientation-reversing symmetry をもつ．
(a2) C が平面曲線かつ ds2f が effective symmetry をもつ．
(b) C が正の C-orientation-reversing symmetry をもち, かつ ds2f が effective symmetry

をもつ．

4 具体例
(3, 4)-カスプ辺 (つまり，m = 3かつα(u, v) = 1)の場合における，定理Aおよび定理 BのNf = 1

に対応する具体例を以下に述べる．

4.1 定理 Aの具体例
• (3, 4)-カスプ辺の nf = 4に対応する具体例
ϕ1(u, v) := 1− v3 − 2v4 − uv4 として，f1 を

f1(u, v) := (−1 + ϕ1(u, v) cosu, ϕ1(u, v) sinu, −v3 + 2v4 + uv4)

とする．f1 の特異曲線の像を C1 とする．C1 の symmetry S, T ∈ O(3)をそれぞれ

S :=

1 0 0
0 1 0
0 0 −1

 , T :=

1 0 0
0 −1 0
0 0 1


とすると，S は C-orientation-preserving，T は C-orientation-reversing である．f1 に対応
する等長双対 f̌1, 逆 f1∗, 等長双対 f̌1∗ はそれぞれ

f̌1 = Sf1, f1∗ = Tf1, f̌1∗ = STf1 (= TSf1)

である (図 4)．

図 4 f, f̌ , f∗, f̌∗ の原点近傍における像の図示 (f = f1)．橙色，赤色，緑色，青色の曲面がそれ
ぞれ f, f̌ , f∗, f̌∗ に対応している．図は像が異なる 4種類の曲面を表す．



• (3, 4)-カスプ辺の nf = 2に対応する具体例
f2(u, v)を

f2(u, v) := (u+ v4, u3 + v4, v3)

とする．f2の特異曲線の像を C2として，C2の C-orientation-reversing symmetry T ∈ O(3)

と ds2f2 の non-effective symmetry φを

T :=

−1 0 0
0 −1 0
0 0 1

 , φ(u, v) := (u,−v)

とする．f2 に対応する等長双対 f̌2，逆 f2∗，逆双対 f̌2∗ はそれぞれ

f̌2 = f2 ◦ φ, f2∗ = Tf2, f̌2∗ = Tf2 ◦ φ

である (図 5)．

• (3, 4)-カスプ辺の nf = 1に対応する具体例
f3(u, v)を

f3(u, v) := (u, v3, u2 + v4)

とする．ds2f3 の effective symmetry φと non-effective symmetry ψ を

φ(u, v) := (−u, v), ψ(u, v) := (u,−v)

とすると，f3 に対応する等長双対 f̌3，逆 f3∗，逆双対 f̌3∗ はそれぞれ

f̌3 = f3 ◦ ψ, f3∗ = f3 ◦ φ, f̌3∗ = f3 ◦ φ ◦ ψ

である (図 5)．

図 5 f, f̌ , f∗, f̌∗ の原点近傍における像の図示 (左:f = f2, 右:f = f3)．左図は f と f̌(橙色の曲
面)および f∗ と f̌∗(青色の曲面)がそれぞれ像として一致し，右図は f, f̌ , f∗, f̌∗ すべてが像とし
て一致している．

4.2 定理 Bの具体例
• mが奇数で，(a1)を満たす場合に対応する具体例
4.1節の f1 が条件を満たす．



• mが奇数で，(a2)を満たす場合に対応する具体例
ϕ4(u, v) := 1 + v3 として，f4 を

f4(u, v) := (−1 + ϕ4(u, v) cosu, ϕ4(u, v) sinu, v
3 + v4)

とする．f4の特異曲線の像をC4として，C4のC-orientation-preserving symmetry S ∈ O(3)

と ds2f4 の effective symmetry φを

S :=

1 0 0
0 1 0
0 0 −1

 , φ(u, v) := (−u, v)

とする．f4 に対応する等長双対 f̌4，逆 f4∗，逆双対 f̌4∗ はそれぞれ
f̌4 = Sf4, f4∗ = f4 ◦ φ, f̌4∗ = Sf4 ◦ φ

である (図 6)．
• mが奇数で，(b1)を満たす場合に対応する具体例
4.1節の f2 が条件を満たす．

• mが奇数で，(b2)を満たす場合に対応する具体例
4.1節の f3 が条件を満たす．

• mが奇数で，(c)を満たす場合に対応する具体例
Hattori-Honda-Morimoto[2] により導入された helicodical n-type edge の Bour型表現公式
により表されるヘリコイドが該当する．f5 を次のように定義する．

f5(u, v) := (−
√

1− h2 + x(v) cos θ(u, v), x(v) sin θ(u, v), z(v) + hθ(u, v))

ただし，hは十分小さな正数，x(v), z(v), θ(u, v)はそれぞれ

x(v) =
√
U(v)2 − h2

z(v) =

∫ v

0

ζ2U(ζ) ρh,1(ζ)

U(ζ)2 − h2
dζ

θ(u, v) = u+ h

∫ v

0

ζ2ρh,1(ζ)

U(ζ)
(
U(ζ)2 − h2

) dζ
であり，U(v), ρh,1(v)はそれぞれ

U(v) = 1 +

∫ v

0

ζ2 sin ζ dζ

= (−v2 + 2) cos v + 2v sin v − 1

ρh,1(v) =
√
U(v)2 − h2 − U(v)2V (v)2

である．ここで V (v)は U ′(v) = v2V (v)を満たす滑らかな関数であり，V (v) = sin v がとれ
る．f5 の特異曲線の像を C5 として，C5 の symmetry T ∈ O(3)と ds2f5 のヤコビアンが負と
なる effective symmetry φを

T :=

1 0 0
0 −1 0
0 0 −1

 , φ(u, v) := (−u, v)



とする．detT = 1かつ Tc(u) = c(−u)が成り立つため，T は正の C-orientation-reversing

symmetryである．f5 に対応する等長双対 f̌5，逆 f5∗，逆双対 f̌5∗ はそれぞれ

f̌5 = Tf5 ◦ φ, f5∗ = Tf5, f̌5∗ = f5 ◦ φ

と表される (図 6)．

図 6 f, f̌ , f∗, f̌∗ の像の図示 (左:f = f4, 右:f = f5, h = 0.25)．左図は f と f∗(緑色の曲面)お
よび f̌ と f̌∗(青色の曲面) がそれぞれ像として一致している．右図は f, f̌ , f∗, f̌∗ すべてが像とし
て一致している．

• mが奇数で，(d)を満たす場合に対応する具体例
4.1節の f3 が条件を満たす．
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